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TECHNICAL NOTE D-151 

COMBINED OPERATIONS WITH AND WITHOUT AFTERBURNING 

FOR MINIMUM FUEL CONSUMPTION I N  UVEL FLIGHT 
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SUMMARY 

The present  repor t  contains a preliminary analysis  of combined 
operations with and without afterburning with regard t o  maneuvers of 
minimum f u e l  consumption. The simple case of l e v e l  f l i g h t  i s  i n v e s t i -  
gated and the o p t h i z i n g  condition determined. A general  procedure i s  
developed f o r  computing; the spec ia l  Mach number a t  which the t r a n s i t i o n  
from nonafterburning operations t o  afterburning operations must occur. 
It i s  shown t h a t  the altitude-Mach nmber plane can be divided intn a 
number of basic  regions, i n  each of which a preferred mode of operat ion 
e x i s t s  f o r  the engine. Several numerical examples are included i l l u s -  
trating the general  theory and supplying a tangible proof of the  minimal 
character of the solut ion.  

INTRODUCTION 

An important c h a r a c t e r i s t i c  of some modern types of t u r b o j e t  engines 
i s  t h a t  they embody t h a t  device of t h r u s t  augmentation which i s  commonly 
known as afterburning. A s  a r e s u l t  of the low fue l - to-a i r  r a t i o s  used 
i n  turboje t  engines, the products of combustion leaving the turbine con- 
t a i n  enough unburned a i r  t o  support f u r t h e r  combustion. By an appropri-  
a t e  i n j e c t i o n  of f u e l  i n t o  the t a i l p i p e  the t h r u s t  can be considerably 
increased a t  the expense, however, of a decrease i n  the  overa l l  e f f i c i e n c y  
of  the engine. I n  a t y p i c a l  case the af terburner  increases the  t h r u s t  by 
as much as 40 percent a t  and 100 percent  a t  
M = 2. The r a t e  of f u e l  consumed per u n i t  t i m e  (product of t h r u s t  t i m e s  
s p e c i f i c  f u e l  consumption), however, increases by approximately 160 per- 
cent a t  M = 0, M = 1, and M = 2. 

M = 0, 70 percent a t  M = 1 

Clearly,  the afterburning device i s  of i n t e r e s t  i n  a l l  those cases 
where superperformances are i n  order. For instance, the  maximum speed of 
an a i r c r a f t  can be considerably improved over shor t  periods of t i m e  by 
the use of methods of t h r u s t  a w e n t a t i o n ;  analogously, the t i m e  necessary 
f o r  a t y p i c a l  f i g h t e r  in te rceptor  t o  acce le ra te  and climb can be shortened 
t o  a s i o s t a n t i a l  ex ten t .  
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I n  the present  report ,  problems of minimum f u e l  consumption are 
considered and the p o s s i b i l i t i e s  arising from combined operations with 
and without afterburning explored. The key idea i s  t h a t ,  f o r  an a i r -  
c r a f t  which m u s t  be t ransfer red  from one condition of f l i g h t  t o  another, 

any increase i n  energy height may become r a t h e r  expensive 

i n  terms of f u e l  if a port ion Gf the t r a j e k t o r y  i s  t o  be flown without 
af terburning i n  the so-called c r i t i c a l  region ( f i g .  1). 
within the context of the present report ,  i s  approximately defined as 
t h a t  region of the altitude-Mach number plane which i s  i n  immediate 
contact  with the geometrical locus of the poin ts  where T - D = 0, T 
being the t h r u s t  without afterburning and D the drag. A s  i s  known the 
drag D s p l i t s  i n t o  z e r o - l i f t  drag and induced drag. The la t te r  i s  
computed by approximating the equation of motion on the  normal t o  the  
f l i g h t  path as L - W = 0 .  

The l a t t e r ,  
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Star t ing  with a simple physical  scheme, the problem of the accel-  
e r a t i o n  i n  l e v e l  f l i g h t  from one veloci ty  t o  another i s  invest igated.  
This invest igat ion w a s  conducted a t  Purdue University under the spon: .,or- 
sh ip  and with the f i n a n c i a l  ass is tance of the  National Advisory Committee 
f o r  Aeronautics. i 

a 

C 

CD 

CL 

D 

L 

b l  

SYMBOLS 

speed of sound, f t  see'' 

s p e c i f i c  f u e l  consumption, sec-1 

drag coef f ic ien t  

l i f t  coef f ic ien t  

drag, l b  

acce lera t ion  of grav i ty ,  f t  sec-* 

a l t i t u d e  above sea l e v e l ,  f t  

r a t i o  of induced drag coef f ic ien t  t o  square of lift 
coef f ic ien t  

l i f t ,  lb 

Mach number 
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P atmospheric pressure,  l b  f t e2  

9 

R 

S reference surface,  f t 2  

weight of f u e l  consunaed per  u n i t  time, l b  sec- l  

a i r  constant, f t 2  sec-2 OR-' 

t t i m e ,  sec  

T t h r u s t ,  l b  

v f l i g h t  veloci ty ,  f t  sec'l 

W weight of a i r c r a f t ,  lb 

W f  

U 

7 

weight of f u e l  consumed, l b  

der ivat ive of air  temperature with respec t  t o  a l t i t u d e ,  
OR f t ' l  

r a t i o  of spec i f ic  heat a t  constant pressure t o  s p e c i f i c  
heat  a t  constant volume 

h p a r a m t e r  defined by equation (22) 

r a t i o  of pressure a t  a l t i t u d e  h t o  pressure a t  the 
tropopause b 

P absolute densi ty  of air, l b  f t-4 sec2 

I- absolute temperature of a i r ,  OR 

S upe r s c r  i p  t 

(3 f l i g h t  condition with af terburner  operating 

Subs c r i p  t s 

i 

f 

t 

. 

i n i t i a l  point  

f i n a l  point  

t r a n s i t i o n  poin t  from operation without af terburner  t o  
operation with afterburner and vice versa  
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condition a t  tropopause * 
0 z e r o - l i f t  condition o r  sea- level  condition 

FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION 

I n  the present  repor t  a l e v e l  f l i g h t  t r a j e c t o r y  flown over a s h o r t  
per iod of time i s  analyzed. A s  a consequence, the weight W of the 
a i r c r a f t  is regarded as a constant i n  the equations of motion. The 
turbojet-powered airplane i s  thought of as a p a r t i c l e .  The small angle 1 
between t h r u s t  vector and veloci ty  vector i s  neglected. The aerodynamic 
l a g  is  disregarded, t h a t  i s ,  l i f t  and drag  forces  are calculated as i n  
unaccelerated f l i g h t .  

W 

1 
6 

It i s  assumed t h a t  the t u r b o j e t  engine may develop two leve ls  of 
t h r u s t ,  one without afterburning and another one with afterburning. For 
the operation without af terburning the t h r u s t  T, the  s p e c i f i c  f u e l  
consumption c, and the rate of f u e l  flow q are assumed a r b i t r a r y  but  
spec i f ied  functions of the following type : 

t 

T = T(V,h) (1) 

q = CT = q(V,h) ( 3 )  

where h is  the f l i g h t  a l t i t u d e .  Analogous hypotheses are accepted f o r  
the  operation with afterburning ( i n  general  T and T are a n a l y t i c a l l y  
d i f f e r e n t  functions of veloci ty  and a l t i t u d e ;  the same remark appl ies  t o  
c and e) :  

- 
T = T(V,h) (4)  

C = E(V,h) . ( 5 )  

i 

c 
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The equation of motion on the tangent t o  the f l i g h t  path is  wr i t t en  
as : 

f o r  the  operation without afterburning and as  

f o r  the operation with afterburning. The at tendant  equation on the 
normal t o  the f l i g h t  path i s  

L - w = o  ( 9 )  

I n  addi t ion,  the re la t ionship  between d r a g  and l i f t  i s  assumed t o  have 
the form 

D = D(V,h,L) (10) 

OPTIMIZING CONDITION 

The following functions are  now defined: 

where @ r e f e r s  t o  engine operating without afterburning and 6 t o  
engine operating with afterburning. 
(3) ,  (4), ( 6 ) ,  ( g ) ,  and (lo), and eliminating the l i f t ,  one concludes 
t h a t  f o r  a given weight the t w o  functions @ and 6 have the form: 

After  accounting f o r  equations (l), 
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Assume now t h a t  the a i r c r a f t  i s  t o  be t ransfer red  from an i n i t i a l  condi- 
t i o n  of f l i g h t  (h,Vi) t o  a f ina l  condition of f l i g h t  (h,Vf) a t  constant 
a l t i t u d e .  
i n t e r v a l  (Vi  ,Vt)  is  flown without af terburning, while the ve loc i ty  
i n t e r v a l  (Vt ,Vf )  i s  flown with afterburning'. 
consumed is  given by: 

Assume a l s o ,  f o r  the sake of discussion, t h a t  the  ve loc i ty  

The t o t a l  weight of f u e l  
W 
1 
1 
6 

$ Clearly,  f o r  given values of V i  and Vf equation (15) takes  the form: 

A s  a consequence, a necessary condition t o  t h e  exis tence of an extremum 
f o r  the weight of fuel consumed i s  t h a t  

where the p a r t i a l  der iva t ive  is  t o  be computed a t  constant a l t i t u d e .  
.applying the general  theorem of der ivat ion under an i n t e g r a l  sign, one 
obtains : 

By 

t h a t  is, 

lThe veloci ty  V t  i s  the t r a n s i t i o n  speed from one regime of opera- 
t i o n  t o  another. 
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With reference t o  the a l t i tude-ve loc i ty  plane o r  t o  the altitude-Mach 
number plane equation (19) defines the geometrical locus of the  poin ts  
where the t r a n s i t i o n  from operation without t o  operation with after- 
burning must occur, i f  accelerated maneuvers of minimum f u e l  consumption 
are des i red .  

SOLUTION OF EQUATION DEFINING TRANSITIONAL SPEED 

For a given a l t i t u d e  h the t r a n s i t i o n  speed V t  from operation 
without afterburning t o  operation with afterburning i s  defined by equa- 
t i o n  (19). The latter must be generally solved by approximate methods. 
Nevertheless, by making su i tab le  hypotheses about drag, th rus t ,  and 
s p e c i f i c  f u e l  consumption, considerable s t r i d e s  can be taken toward 
a n a l y t i c a l  solut ions.  

Drag Function 

A parabolic re la t ionship  i s  now assumed between l i f t  coef f ic ien t  CL 
and drag coeff ic ient  CD: 

" 

Both CDo and K are assumed t o  depend on the Mach number M only. 

After accounting f o r  equations (9),  (lo), and (20) the drag fum9Am 
is  w r i t t e n  as: 

where 

2w = -  

n*s 

Y 
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I n  the above equations p i s  the s t a t i c  pressure a t  a l t i t u d e  h and 
p* the s t a t i c  pressure a t  the tropopause &. 

Thrust Function 

With the object  of deriving simple solut ions,  the t h r u s t  i s  assumed 
t o  be the product of a function of the Mach number only t i m e s  a funct ion 
of the density r a t i o  only. The f i r s t  funct ion i s  regarded as i d e n t i c a l  
with the  t h r u s t  a t  the tropopause. The second funct ion i s  considered a 
power of the densi ty  r a t i o  only: W 

1 
I 
6 

I 

In the above equations R = p / p ~  the air constant and a the deriva- 
t i v e  dT/dh of the absolute temperature T with  respec t  t o  a l t i t u d e  h 
(-0.003566 OR f t - I  f o r  troposphere; 0 OR ft-I f o r  isothermal s t r a t o -  
sphere) .  Typical values f o r  the x exponent a re :  x = 0.75 for tropo- 
spheric f l i g h t  and x = 1 f o r  s t ra tospher ic  f l i g h t .  The m constant 
i s  m = 0.8097 f o r  the troposphere and m = 1 f o r  the isothermal 
region of the s t ra tosphere.  

Wi th  regard 
i s  assumed: 

Specif ic  Fuel Consumption Function 

t o  the s p e c i f i c  f u e l  consumption, the following funct ion 

where y i s  an appropriate constant ( t y p i c a l  values: y = 0.15 for 
tropospheric f l i g h t ;  y = 0 f o r  s t ra tospher ic  f l i g h t ) .  

" 
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Generalized Solution 

After accounting f o r  equations (21) t o  ( 2 8 ) ,  equation (19) can be 
rewr i t ten2 as 

where 
W 
1 
1 
6 

A =  

- -  e* 1 
c* 

= A(M) 

Stratospheric  f l i g h t . -  For f l i g h t  i n  the isothermal region of the  
s t ra tosphere m = x = 1 equation ( 2 9 )  can be solved i n  terms of the 
r e l a t i v e  pressure : 

A s  a consequence, the re la t ionship  between a l t i t u d e  and Mach number i s  
w r i t t e n  as: 

Tropospheric f l i g h t . -  For f l i g h t  i n  the troposphere, the t r a n s i -  
t i o n a l  speed equation must be solved by approximate procedures. Notice 

*The subscr ipt  t denoting t r a n s i t i o n a l  condition i s  now dropped, 
s ince there  i s  no longer any p o s s i b i l i t y  of ambiguity. 
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t h a t ,  given the a i r c r a f t  and the engine, equation (29) i s  represented 
by a family of s t r a i g h t  l i n e s  i n  the AB plane, namely one s t r a i g h t  l i n e  
f o r  each value of the pressure r a t i o  r[ ( f i g .  2 ) .  

I n  the case where the t r a n s i t i o n  speed Vt i s  t o  be calculated f o r  
s e v e r a l  values of the a l t i t u d e  h, the following i n d i r e c t  procedure i s  
appropriate : 

(1) Selec t  an a r b i t r a r y  Mach number and compute the two funct ions 
A(M) and B(M); 

(2 )  Enter i n t o  f igure  2 and determine the pressure r a t i o  corre- 
sponding t o  the establ ished Mach number. 

W 
1 
1 
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I n  view of the graphical operations involved i n  s t e p  (2), the above 
method yields  an approximate value f o r  the pressure r a t i o  
t h e l e s s ,  the inherent e r r o r  can be corrected by wri t ing the exact  solu- 
t i o n  of equation (29) i n  the form: 

Sa. Never- 

J 
fl = X a ( l  + 6 )  (34) 

.d 

The correction term 6 << 1 
i n t o  equation (29) and l inear iz ing  the l a t te r  i n t o :  

can be computed by introducing equation (34) 

fla l+mx[l + 6(1 + m,] - ha2(l + 26) - B 2 0 ( 3 5 )  

A s  a consequence, the correct ion 6 is :  

2 l+mX B + h a  - f i a  

WEIGHT OF FUEL CONSLM3D 

Under the same hypotheses, as s t a t e d  e a r l i e r ,  the  below ind ica ted  
expression can be derived f o r  the weight of f u e l  consumed. Reference 
i s  made t o  the port ion of the f l i g h t  path flown without afterburning: 
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. 

W f  - 
W 

a*c*o my 
II 

Q 

'+  - 1-rn T"t 
2 

J M i  

11 

(37) 

I n  the above equation a, denotes speed of sound calculated a t  h = &, 
s p e c i f i c  f u e l  consumption a t  h = h, and M = 0, and T* t h r u s t  

a t  h = & and M = 0.  An analogous expression can be derived f o r  the 
port ion of the f l i g h t  path flown with af terburning.  

c*O 0 

UNACCELERATED LFVEL FLIGHT EQUATION 

It i s  of in te res t  t o  note t h a t  the  general  procedure developed 
e a r l i e r  for solving the t r a n s i t i o n a l  speed equation can a l s o  be used 

nonaf terburning case and the afterburning case. 
for the eq.uation of .u-&cceiei-ate& iev-ei f i i g p i t  foi- boti tie 

With reference t o  t h e  nonafterburning case, t h e  steady f l i g h t  a t  
constant a l t i t u d e  i s  defined by equations (g) ,  (lo), and by the f o l -  
hwing  addi t iona l  expression 

T - D = O  ( 3 8 )  

Under the s t a t e d  hypotheses f o r  the drag and t h r u s t  functions,  equa- 
t i o n  (38) can be reduced t o  the form represented by equation (29) .  
two functions A and B, however, modify in to :  

The 

W 

Concerning the s t ra tospher ic  case, equations (32) and (33) are s t i l l  
val id ,  with A and B defined by equations (39) and (40).  For the 
tropospheric case the  general  procedure of the sect ion e n t i t l e d  
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"Tropospheric f l i g h t ' '  i s  a l s o  v a l i d  with p a r t i c u l a r  reference t o  the use 
of f igure  2 and equations (34) t o  (36). I 

Analogous remarks r e f e r  t o  the so lu t ion  of the unaccelerated l e v e l  
f l i g h t  equation with thrust augmentation, the only difference being t h a t  
T and T* must be replaced with T and T,. 

- - 

DISCUSSION OF RESULTS 

With the  objec t  of i l l u s t r a t i n g  the previous theory, a numerical 
example i s  car r ied  out f o r  the below indicated set of conditions.  

The a i r c r a f t  i s  represented by 

A = 0.233 C D ~ ~  = 0.02 KO = 0.212 

the assigned value f o r  A corresponding t o  a wing loading 
W/S = 80 l b  ft'2. The symbols CDoo and KO denote values of CDo 
and K calculated a t  M = 0.  The two r a t i o s  C D ~ / C D ~ ~  and K/Ko are 
represented i n  f i g u r e  3 as functions of the Mach number. 

The engine i s  represented by 

rn 
1* 2 .. = 0.235 - -  - 0.0069 c*,a* 
w 62 

W 
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- -  
The two r a t i o s  T*/T*o and T.+/Ts0 are p l o t t e d  i n  f i g u r e  4 as functions 

of the  Mach number M; the  o ther  two r a t i o s  C,/CS0 and E*/E* 
indicated i n  f igure  5 .  

are 
0 

S t a r t i n g  from the above data  equation (29) i s  solved a t  various 
a l t i t u d e s  f o r  th ree  s p e c i f i c  cases: bes t  t r a n s i t i o n a l  speed, unacceler- L1 

a t e d  leve l  f l i g h t  without afterburning, and unaccelerated l e v e l  f l i g h t  
with afterburning. The r e s u l t s  of numerical computations are indicated 
i n  f i g u r e  6 i n  the altitude-Mach number plane.  

r. 
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- 
Notice that the three curves T - D = 0 ,  T - D = 0 and @ - 5 = 0 

s p l i t  the  hM plane i n t o  the four  regions A, B, C ,  and D endowed with the 
following propert ies :  

(1) I n  the regions A and B accelerated f l i g h t  occurs both w i t h  
af terburning and without afterburning. 

(2)  I n  region C accelerated f l i g h t  is  possible  only with af terburning.  

(3) I n  region D only decelerated f l i g h t  occurs. 

If accelerated maneuvers of minimum f u e l  consumption are desired,  the  
following r u l e s  must be kept i n  mind: 

(1) A l l  portions of the f l i g h t  pa th  which belong t o  the region A must 
be flown without af terburning.  

(2) All port ions of the f l i g h t  path which belong t o  regions B and C 
m u s t  be flown with af terburning.  

(3j  The switching frm me regime ef eperation t o  another must occur 
along the l i n e  @ - ;6 = 0 .  

Specif ic  Examples f o r  Prescribed S e t  of End Conditions 

Some s p e c i f i c  numerical examples are now presented ( f i g .  6 ) .  

(1) Assume t h a t  the f l i g h t  a l t i t u d e  i s  h = 40,000 feet ,  t h a t  the  

The i n i t i a l  point  I belongs t o  region B and the f i n a l  point  F 
i n i t i a l  Mach number i s  
Mf = 2. 
t o  region C .  
flown with afterburning ( s o l i d  l i n e  of f i g .  6 ) .  

M i  = 0.8 and that the f i n a l  Mach number i s  

A s  a consequence, the optimum path IF  i s  t o  be e n t i r e l y  

(2)  Consider the case where the f l i g h t  a l t i t u d e  i s  h = 30,000 f e e t .  
Assume M i  = 0.6 and Mf = 2. The i n i t i a l  point  I belongs t o  region A 
and the f inal  point  F t o  region C .  
t i o n  I T  flown without afterburning (dot ted l i n e )  and a port ion TF flown 
with afterburning ( s o l i d  l i n e ) ,  the t r a n s i t i o n  occurring a t  Mach number 
Mt = 0.95. 

The optimum path  1°F includes a por- 

The associated d i s t r i b u t i o n  of t h r u s t  i s  indicated i n  f igure  7. 

(3) Consider the case where the f l i g h t  a l t i t u d e  i s  h = 10,000 feet ,  
Mi = 0.4, and Mf = 0.8. 
belong t o  the region A .  A s  a consequence, the optimum path I F  i s  t o  be 
e n t i r e l y  flown without afterburning (dot ted l i n e  of f i g .  6 ) .  

Both the i n i t i a l  point  I and the f i n a l  po in t  F 
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Numerical Check of Minimal Character of Solution 
c 

I n  order t o  ver i fy  the minimal character  of the solut ion,  the second 
example of the preceding sect ion i s  considered h = 30,000 f e e t ,  
M i  = 0.8,  and Mf = 2. 

Mt = 0.95 
Transit ion Mach numbers other  than the optimum 

a r e  assumed and the function: 

- 
'f i- wf = f ( M t )  

W 
(44) 

W 
1 
1 
6 i s  computed and p l o t t e d  i n  f igure  8. 

concepts : 
The la t te r  points  out  the following 

(1) The t r a n s i t i o n a l  solut ion Q - 5 = 0 minimizes the f u e l  
consumed. 

(2 )  A s h i f t i n g  i n  the t r a n s i t i o n  Mach number with respec t  t o  the  
optimum one may cause a considerable increase i n  f u e l  consumed if the  
t r a n s i t i o n  point  penetrates  i n t o  the so-called c r i t i c a l  region, as 
defined i n  f i g u r e  1. 

CONCLUSIONS 

Combined operations with and without af terburning a r e  analyzed i n  
connection with the problem of accelerat ing an a i r c r a f t  i n  l e v e l  f l i g h t  
from one veloci ty  t o  another.  

A general procedure i s  developed f o r  computing the t r a n s i t i o n a l  
speed; t h a t  i s ,  the veloci ty  a t  which the switching from nonafterburning 
operations t o  afterburning operations m u s t  occur f o r  minimum f u e l  
consumption. 

Several regions are detected i n  the altitude-Mach number domain, 
i n  each of which a prefer red  mode of operation e x i s t s  f o r  the engine. 
Numerical examples a r e  included, i l l u s t r a t i n g  the  general  theory and 
confirming the minimal character of the so lu t ion .  

Purdue University, 
Lafayette, Ind.,  Apri l  22, 1958. 
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Figure 8.- Influence of t r a n s i t i o n  Mach number on f u e l  consumed while 
acce lera t ing .  
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